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1 Abstract

Ultra-high performance concrete (UHPC) is an advanced construction material that affords opportunities to
innovate the structures made of conventional concrete (NC). The one-way UHPC-NC hybrid slab, designed to
have the UHPC layer in tension and the NC layer in compression, can be an optimal use of UHPC for bridge
deck. The analytical solutions for normal stress are essential under service limit state, but they cannot be found
in the literature by now. Based on the elastic theory, analytical formulas for the neutral axis position and
flexural stress are derived. The lowest neutral axis position is attained when the UHPC layer thickness ratio
(UHPC layer thickness / hybrid slab thickness) approximates 0.4. The criteria to judge the position of neutral
axis within UHPC or NC region are analytically established. To find out the ideal scenario to reach the allowable
compressive stress in NC and allowable tensile stress in UHPC simultaneously, an inequality constraint with
the elastic modulus ratio is proposed. Considering the UHPC tensile stress limitation and flexural moment
capacity of the hybrid slab, the rational thickness ratio of UHPC layer of 0.4 is suggested, which can achieve
better economy and efficiency of the hybrid slab.
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with UHPC, allowing for its preparation conditions
2 Introduction being strict and costly [2]. To this end, a new kind of
hybrid slab or beam, consisting of precast UHPC
bottom layer and cast-in-place normal concrete on
the top, can be initiated for bridge decks (Figure 1).
This alternative design for concrete slab has some
remarkable advantages. Since UHPC can provide
greater tensile capacity by mixing with high-priced
steel fibers, such hybrid slab can make full use of
tensile strength of UHPC and reduce construction
cost compared with full depth UHPC slab. Besides,
the precast UHPC bottom layer is to be easily
shipped and installed because of its reduced size
and weight, and it can also serve as gratis formwork
when casting the rest part of concrete slab.

Since the 1990s, an increasing number of
investigators have endeavored to alter and
optimize the constituents of normal concrete (NC)
in order to increase its strength, ductility and
durability. As a result, some new products have
been developed, such as engineered cementitious
composite (ECC), reactive powder concrete (RPC),
and ultra-high performance fiber-reinforced
concrete (UHPFRC). In recent years, the ultra-high
performance concrete (UHPC) has become more
widely accepted as a general term to indicate these
new variations [1].

Although UHPC is generally acknowledged as one of
the most potential materials in the near future, it is
still unrealistic to build the whole bridge structure
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