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1 Abstract 

The design of skewed I-girder steel bridges is common throughout the country. Such bridges have been 
fabricated and constructed and have generally performed well. Where issues have been encountered, they 
were primarily related to bridge construction and, quite often to the torsional behavior of the severely skewed 
bridge superstructure. Until recently, there have been few analysis and design guidelines available to the 
structural designer on the construction engineering of the skewed I-girder bridges. AASHTO [1] specifies that 
the contract documents should state the fit condition for which the cross frames are detailed for I-girder 
bridges. Recommendations are also provided for the estimation of the cross frame locked-in forces.  This paper 
presents a case study in a fit-up analysis of multi-span skewed I-girder steel bridge using 3D finite element 
method modeling. Fit-up analysis was carried out to evaluate girder’s web distortions, determine the cross-
frames locked-in forces and compare them to the recent AASHTO’s recommendations. The paper should 
provide designers with a more detailed understanding of a bridge’s behavior in this condition as compared 
with the more generalized recommendations from AASHTO guidelines. 
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2 Introduction 

For horizontally curved or skewed steel I-girder 
bridges, assurance of fit-up is one of the critical 
attributes in the bridge construction engineering. 
AASHTO [1] provides a general guidance on the 
detailing of structural components using one of the 
three common fit conditions: No-Load Fit (NLF), 
Steel Dead Load Fit (SDLF), and Total Dead Load Fit 
(TDLF). NLF refers to the condition where the cross-
frames are detailed to fit to the girders in their 
plumb position under zero load, in which case, the 

girder webs will be out-of-plumb after any dead 
load is applied. SDLF and TDLF refer to the 
conditions where the cross-frames are detailed to 
fit to the girders in their ideally plumb deflected 
position under the steel dead load and total dead 
load, respectively. National Steel Bridge Alliance, 
NSBA, Fit Task Force Committee [2] provides a set 
of recommendations on the level of steel detailing 
fit or lack of as a function of bridge skew index 
parameter, bridge skew angle, and span length. For 
this paper, the fit-up analysis was performed based 
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