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Crack widths in portal frame bridges subjected to restraint effects 
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1 Abstract 
Restraint stresses appear in structural parts which are prevented from adjusting their shape when subjected 
to e.g. shrinkage or thermal actions. If the restrained stresses are large, cracking might occur, which can affect 
the durability of the structure. In the case of restraint effects, the reinforcement required in a bridge to limit 
the crack widths can be difficult to determine, as the magnitude of the restraint stresses depend on the 
stiffness of the structure. If cracking occurs, the stiffness is reduced and thereby also the stresses. For this 
reason, in structural parts affected by restraint effects, it can be hard to estimate both the number of cracks 
that will appear and the resulting restraint stress that governs the crack widths. 

In this study, crack widths in a portal frame bridge subjected to thermal actions and shrinkage were 
investigated using non-linear FE analysis. A bond-slip relation was used for concrete-reinforcement 
interaction, as the resulting crack spacing was unknown. Corresponding analysis was performed using linear 
elastic material models and hand calculations of crack widths, for two different thermal load cases, and 
relations between the results from the different methods are presented. The result can lead to the 
development of a more accurate design model, which would lead to more efficient use of reinforcement. 
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2 Introduction 
Restraint effects can cause cracking in reinforced 
concrete structures. However, as the magnitude of 
restraint stresses depend on the stiffness of the 
structure, the restraint stresses will decrease when 
cracking occurs [1]. The resulting restraint stresses, 
which govern crack widths, are hard to predict as 
they depend on the magnitude of cracking.  

Portal frame bridges can be subjected to both 
thermal actions and shrinkage. These load effects 
often cause restraint stresses to appear in the 
bridges, as the structural parts are rigidly connected 
to each other. In design of bridges, finite element 

(FE) models using a linear elastic material model for 
concrete are often used. The tensile stresses 
resulting from the calculations are then used to 
determine the required reinforcement amounts. 
However, in the main Eurocode document 
regarding design of concrete structures [2], the 
methodology for crack width calculation is based on 
the non-restraint case, where the stresses are 
independent of the cracking. If the stiffness 
reduction due to cracking is not considered in any 
other way, the resulting reinforcement amounts 
required for e.g. crack width limitation will be 
overestimated.  

In Sweden, differences in shrinkage due to casting 
of portal frame bridges in stages, combined with the 
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