0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

S. T. G. Raghukanth ORCID

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Sreenath, Vemula / Basu, Jahnabi / Raghukanth, S. T. G. (2023): Ground motion models for regions with limited data: Data‐driven approach. In: Earthquake Engineering and Structural Dynamics, v. 53, n. 3 (Dezember 2023).

    https://doi.org/10.1002/eqe.4075

  2. Meenakshi, Yellapragada / Sreenath, Vemula / Raghukanth, S. T. G. (2023): Ground motion models for Fourier amplitude spectra and response spectra using Machine learning techniques. In: Earthquake Engineering and Structural Dynamics, v. 53, n. 2 (November 2023).

    https://doi.org/10.1002/eqe.4036

  3. Meenakshi, Yellapragada / Podili, Bhargavi / Raghukanth, S. T. G. (2024): Design energy spectra for Peninsular India: A preliminary step towards energy-based design in India. In: Soil Dynamics and Earthquake Engineering, v. 177 (Februar 2024).

    https://doi.org/10.1016/j.soildyn.2023.108358

  4. Sreenath, Vemula / Podili, Bhargavi / Raghukanth, S. T. G. (2023): A hybrid non‐parametric ground motion model for shallow crustal earthquakes in Europe. In: Earthquake Engineering and Structural Dynamics, v. 52, n. 8 (März 2023).

    https://doi.org/10.1002/eqe.3845

  5. Podili, Bhargavi / Raghukanth, S. T. G. (2023): Alternative regional ground motion models for Western Himalayas. In: Soil Dynamics and Earthquake Engineering, v. 168 (Mai 2023).

    https://doi.org/10.1016/j.soildyn.2023.107805

  6. Vemula, Sreenath / Kp, Sreejaya / Raghukanth, S. T. G. (2022): Neural Network-Based Subduction Ground Motion Model and Its Application to New Zealand and the Andaman and Nicobar Islands. In: Journal of Earthquake Engineering, v. 27, n. 10 (September 2022).

    https://doi.org/10.1080/13632469.2022.2121333

  7. Sreenath, Vemula / Raghukanth, S. T. G. (2023): Stochastic ground motion models to NGA‐West2 and NGA‐Sub databases using Bayesian neural network. In: Earthquake Engineering and Structural Dynamics, v. 52, n. 1 (Februar 2023).

    https://doi.org/10.1002/eqe.3759

  8. Sreejaya, K. P. / Raghukanth, S. T. G. / Gupta, I. D. / Murty, C. V. R. / Srinagesh, D. (2022): Seismic hazard map of India and neighbouring regions. In: Soil Dynamics and Earthquake Engineering, v. 163 (Dezember 2022).

    https://doi.org/10.1016/j.soildyn.2022.107505

  9. Sreejaya, K. P. / Podili, Bhargavi / Raghukanth, S. T. G. (2022): Hazard consistent vertical design spectra for active regions of India. In: Soil Dynamics and Earthquake Engineering, v. 161 (Oktober 2022).

    https://doi.org/10.1016/j.soildyn.2022.107395

  10. Sangeetha, S. / Raghukanth, S. T. G. (2022): Broadband ground motion simulations for Northeast India. In: Soil Dynamics and Earthquake Engineering, v. 154 (März 2022).

    https://doi.org/10.1016/j.soildyn.2021.107120

  11. Podili, Bhargavi / Sreejaya, K. P. / Raghukanth, S. T. G. / Srinagesh, D. / Murty, C. V. R. (2022): A Vertical-to-horizontal spectral ratio model for India. In: Soil Dynamics and Earthquake Engineering, v. 152 (Januar 2022).

    https://doi.org/10.1016/j.soildyn.2021.107060

  12. Vemula, Sreenath / Yellapragada, Meenakshi / Podili, Bhargavi / Raghukanth, S. T. G. / Ponnalagu, Alagappan (2021): Ground motion intensity measures for New Zealand. In: Soil Dynamics and Earthquake Engineering, v. 150 (November 2021).

    https://doi.org/10.1016/j.soildyn.2021.106928

  13. Jayalakshmi, S. / Dhanya, J. / Raghukanth, S. T. G. / Mai, P. M. (2021): Hybrid broadband ground motion simulations in the Indo-Gangetic basin for great Himalayan earthquake scenarios. In: Bulletin of Earthquake Engineering, v. 19, n. 9 (Mai 2021).

    https://doi.org/10.1007/s10518-021-01094-0

  14. Lekshmy, P. R. / Raghukanth, S. T. G. (2021): A hybrid genetic algorithm-neural network model for power spectral density compatible ground motion prediction. In: Soil Dynamics and Earthquake Engineering, v. 142 (März 2021).

    https://doi.org/10.1016/j.soildyn.2020.106528

  15. Dash, S. K. / Reddy, P. D. T. / Raghukanth, S. T. G. (2008): Subgrade modulus of geocell-reinforced sand foundations. In: Proceedings of the Institution of Civil Engineers - Ground Improvement, v. 161, n. 2 (Mai 2008).

    https://doi.org/10.1680/grim.2008.161.2.79

  16. Dhanya, J. / Raghukanth, S. T. G. (2021): Probabilistic Fling Hazard Map of India and Adjoined Regions. In: Journal of Earthquake Engineering, v. 26, n. 9 (Mai 2021).

    https://doi.org/10.1080/13632469.2020.1838969

  17. Dhanya, J. / Muthuganeisan, Prabhu / Raghukanth, S. T. G.: Probabilistic Fling Hazard Map for Himalayan Region. Vorgetragen bei: 5th International Conference on Civil Engineering and Urban Planning (CEUP2016), Xi'an, China, 23 – 26 August 2016.

    https://doi.org/10.1142/9789813225237_0053

  18. Dhanya, J. / Raghukanth, S. T. G. (2020): Non-linear Principal Component Analysis of Response Spectra. In: Journal of Earthquake Engineering, v. 26, n. 4 (August 2020).

    https://doi.org/10.1080/13632469.2020.1773352

  19. Jayalakshmi, S. / Dhanya, J. / Raghukanth, S. T. G. / Martin Mai, P. (2020): 3D seismic wave amplification in the Indo-Gangetic basin from spectral element simulations. In: Soil Dynamics and Earthquake Engineering, v. 129 (Februar 2020).

    https://doi.org/10.1016/j.soildyn.2019.105923

  20. Bhargavi, Podili / Raghukanth, S. T. G. (2019): Rating damage potential of ground motion records. In: Earthquake Engineering and Engineering Vibration, v. 18, n. 2 (April 2019).

    https://doi.org/10.1007/s11803-019-0501-1

  21. Lekshmy, P. R. / Raghukanth, S. T. G. (2019): Stochastic earthquake source model for ground motion simulation. In: Earthquake Engineering and Engineering Vibration, v. 18, n. 1 (Januar 2019).

    https://doi.org/10.1007/s11803-019-0487-8

  22. Gade, Maheshreddy / Raghukanth, S. T. G. (2018): Spatial variation of ground rotational motions in elastic half-space. In: Soil Dynamics and Earthquake Engineering, v. 107 (April 2018).

    https://doi.org/10.1016/j.soildyn.2018.01.007

  23. Podili, Bhargavi / Raghukanth, S. T. G. (2019): Ground motion prediction equations for higher order parameters. In: Soil Dynamics and Earthquake Engineering, v. 118 (März 2019).

    https://doi.org/10.1016/j.soildyn.2018.11.027

  24. Podili, Bhargavi / Raghukanth, S. T. G. (2019): Ground Motion Parameters for the 2011 Great Japan Tohoku Earthquake. In: Journal of Earthquake Engineering, v. 23, n. 4 ( 2019).

    https://doi.org/10.1080/13632469.2017.1342292

  25. Bagchi, Saikat / Raghukanth, S. T. G. (2019): Seismic Response of the Central Part of Indo-Gangetic Plain. In: Journal of Earthquake Engineering, v. 23, n. 2 ( 2019).

    https://doi.org/10.1080/13632469.2017.1323044

  26. Sangeetha, S. / Dhanya, J. / Raghukanth, S. T. G. (2018): 3D Crustal Velocity Model for Ground Motion Simulations in North-East India. In: Journal of Earthquake Engineering, v. 25, n. 3 (Oktober 2018).

    https://doi.org/10.1080/13632469.2018.1520760

  27. Lekshmy, P. R. / Raghukanth, S. T. G. (2015): Maximum Possible Ground Motion for Linear Structures. In: Journal of Earthquake Engineering, v. 19, n. 6 ( 2015).

    https://doi.org/10.1080/13632469.2015.1023472

  28. Raghukanth, S. T. G. / Bhanu Teja, B. (2012): Ground Motion Simulation for January 26, 2001 Gujarat Earthquake by Spectral Finite Element Method. In: Journal of Earthquake Engineering, v. 16, n. 2 ( 2012).

    https://doi.org/10.1080/13632469.2011.634493

  29. Gade, Maheshreddy / Raghukanth, S. T. G. (2017): Simulation of strong ground motion for a MW 8.5 hypothetical earthquake in central seismic gap region, Himalaya. In: Bulletin of Earthquake Engineering, v. 15, n. 10 (März 2017).

    https://doi.org/10.1007/s10518-017-0146-2

  30. Raghukanth, S. T. G. (2011): Seismicity parameters for important urban agglomerations in India. In: Bulletin of Earthquake Engineering, v. 9, n. 5 (April 2011).

    https://doi.org/10.1007/s10518-011-9265-3

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine